Избранные публикации Ю.В.Петрова

Монографии и препринты:

  • Ю.В. Петров. "Квантовая" макромеханика динамического разрушения твердых тел. Препринт ИПМАШ РАН, С.-Петербург, 1996.
  • А.А. Уткин, Ю.В. Петров, И.В. Смирнов. Структурно-временная теория откольного разрушения. С.-Петербург. Политехника. 2016.
  • С.И. Кривошеев, Ю.В. Петров. Экспериментальная установка и методика исследования пороговых разрушающих нагрузок для образцов с макротрещинами при кратковременных ударных воздействиях, создаваемых импульсным магнитным полем. Препринт ИПМАШ РАН, С.-Петербург, 1997.
  • Н.Ф. Морозов, Ю.В. Петров. Проблемы динамики разрушения твердых тел. СПб.: Изд-во СПбГУ, 1997.
  • N. Morozov, Y. Petrov. Dynamics of Fracture. Springer-Verlag. Berlin-Heidelberg-New York, 2000.
  • Ю.В. Петров, А.А. Уткин. Асимптотика напряжений у вершины трещины в динамических задачах теории упругости. СПб: ИПМАШ РАН - СПбГУ, 2001.
  • А.В. Каштанов, Ю.В. Петров. Фрактальное обобщение энергетического баланса в линейной механике разрушения. СПб: ИПМАШ РАН - СПбГУ, 2001.
  • Ю.В. Петров, В.И. Смирнов. Нестационарные колебания и поведение внутренней энергии одномерных тел. СПб: ИПМАШ РАН - СПбГУ, 2002.
  • V. Bratov, N. Morozov, Y. Petrov. Dynamic Strength of Continuum. 2009, St.-Petersburg University Press.


Избранные статьи:

  1. Y.V. Petrov, A.V. Cherkasov,  N.A. Kazarinov (2020) Instability of critical characteristics of crack propagation.  Acta Mechanica  (2020).     https://link.springer.com/article/10.1007%2Fs00707-020-02852-y   DOI:  https://doi.org/10.1007/s00707-020-02852-y  
  2. Yu.V. Petrov and A.A. Utkin (2020) Instability of critical and geometric characteristics of the fracture zone under spall conditions // Mechanics of Solids, 2020, Vol. 55, No. 3, pp. 324–331   DOI:  10.3103/S0025654420030139  https://link.springer.com/article/10.3103%2FS0025654420030139  
  3. IN.S. Selyutina, Yu.V. Petrov (2020) Fracture of saturated concrete and rocks under dynamic loading.  Engineering Fracture Mechanics vol. 225, 106265.  https://www.sciencedirect.com/science/article/abs/pii/S0013794418306660?via%3Dihub  
  4. N.O. Granichin, G.A. Volkov, Y.V. Petrov (2020Delamination of the Planar Adhesion Zone under Combined Dynamic Actions (2020) Technical Physics, 65 (1), pp. 68-72.   https://link.springer.com/article/10.1134/S1063784220010077      DOI: 10.1134/S1063784220010077    
  5. N.A. Kazarinov, V.A. Bratov, N.F. Morozov, Y.V. Petrov, V.V. Balandin, M.A. Iqbal, N.K. Gupta (2020) Experimental and numerical analysis of PMMA impact fracture. International Journal of Impact Engineering, Volume 143, September 2020, 103597      https://doi.org/10.1016/j.ijimpeng.2020.103597
  6. Y. Petrov, A. Logachev, N. Granichin, G. Volkov (2020Adhesive Joint Fracture Under Combined Pulsed and Vibrational Loading (2020) Structural Integrity, 16, pp.100-105. DOI: 10.1007/978-3-030-47883-4_18
  7. A.D. Evstifeev, I.V. Smirnov, Yu.V. Petrov (2020) Effect of Dynamic Strength of a Material on Its Erosion Resistance. Phys. Solid State, 2020, 62, 1737–1740    https://doi.org/10.1134/S1063783420100066    https://link.springer.com/article/10.1134%2FS1063783420100066#Ack1   
  8. N.A. Kazarinov, Yu.V. Petrov, A.V. Cherkasov (2020) Spatial and Temporal Discretization as a Crucial Property of the Dynamic Fracture Process. Mechanics of Solids, 2020, Vol. 55, No. 5, pp. 673–678    DOI: 10.3103/S002565442005009X  
  9. M. Ignatev, N.Kazarinov, Y.Petrov (2020) Peridynamic modelling of the dynamic crack initiation. Proc Str Integr 28 (2020) 1650–1654  DOI  https://www.sciencedirect.com/science/article/pii/S2452321620306405?via%3Dihub   
  10. Y.Petrov, N.Kazarinov (2020) Instabilities encountered in the dynamic crack propagation process under impact loading as a natural consequence of the dynamic fracture discreetness. Procedia Structural Integrity 28 (2020) 1975–1980   https://doi.org/10.1016/j.prostr.2020.11.021
  11. N.V. Mikhailova, Yu.V. Petrov (2020) Calculation of fracture location in multiple spalling. Procedia Structural Integrity 28 (2020) 2026–2031   https://doi.org/10.1016/j.prostr.2020.11.026
  12. N.Kazarinov, Y.Petrov, A.Smirnov (2020) Dynamic fracture effects observed in discrete mechanical systems. Procedia Structural Integrity 28 (2020) 2168–2173   https://www.sciencedirect.com/science/article/pii/S2452321620307046   
  13. L. Igusheva, Y. Petrov (2020) Effects of dynamic deformation and fracture in the Klein – Gordon stress field. Procedia Structural Integrity 28 (2020) 1303–1309 https://www.sciencedirect.com/science/article/pii/S2452321620306028  
  14. A.D. Evstifeev, I.V. Smirnov, Y.V. Petrov (2020) Strain Rate Dependences of the Critical Stresses in Aluminum Al–Mg Alloys upon Impact Loads. Phys. Solid State  62, 1967–1972 (2020). https://doi.org/10.1134/S106378342011013X    https://link.springer.com/article/10.1134/S106378342011013X#Ack1
  15. I.V. Smirnov, Y.V. Petrov (2020) Temporal Characteristics of Failure in High-Speed Tests.  Dokl. Phys.  65,  255–257 (2020). https://doi.org/10.1134/S1028335820050109  https://link.springer.com/article/10.1134%2FS1028335820050109#Fun
  16. V.A. Morozov, Yu.V. Petrov, V.D. Sukhov (2019) Experimental Evaluation of Structural and Temporal Characteristics of Material Fracture Based on Magnetic Pulse Loading of Ring Samples. Technical Physics, 2019, Vol. 64, No. 5, pp. 642–646 DOI: 10.1134/S1063784219050165  https://www.springerprofessional.de/en/experimental-evaluation-of-structural-and-temporal-characteristi/16808948
  17. Smirnov, N. Kazarinov, Y. Petrov (2019) Experimental observation and numerical modelling of unstable behaviour of a fast crack velocity. Theoretical and Applied Fracture Mechanics 101 (2019) 53–58      https://www.sciencedirect.com/science/article/pii/S0167844218306098?via%3Dihub
  18. A.D. Evstifeev, G.A. Volkov, A.A. Chevrychkina, Yu.V. Petrov (2019) Dynamic Strength Characteristics of Materials: Influence of the Specimen Size on Strain Rate. Technical Physics, 2019, Vol. 64, No. 4, pp. 523–526    DOI: 10.1134/S1063784219040091       https://link.springer.com/article/10.1134%2FS1063784219040091
  19. N.S. Selyutina, Yu.V. Petrov (2019) Modeling the Time Effects of Irreversible Deformation Based on the Relaxation Plasticity Model.  Physics of the Solid State, 2019, Vol. 61, No. 6, pp. 935–940  DOI:10.1134/S1063783419060222    https://link.springer.com/article/10.1134/S1063783419060222
  20. V.V. Balandin, N.S. Selyutina, Yu.V. Petrov (2019) Effect of the mass fraction of ice on the strain rate dependence of strength under dynamic fracture of frozen soil. Journal of Applied Mechanics and Technical Physics, 2019, Vol. 60, No.3, pp.533-538       https://link.springer.com/epdf/10.1134/S0021894419030167?author_access_token=bgDeCmXiuHtEMomgctnjdEckSORA_DxfnEvY7GoQybYaAUNuAhvbPvtCjneP7eja_R8uiBJ7KmEcNEcQEo64RQIwx4XKlv3HOFk2N4H-NRdmZ-HKHdrbDSAvVCiJgiUAY_BgJWULg400lKhECfwAnA%3D%3D  
  21. A.N. Martemyanov, Yu.V. Petrov (2019) Comprehensive study of sandstone dynamic strength based on the incubation time criterion. Journal of Applied Mechanics and Technical Physics, 2019, Vol. 60, No. 3, pp. 539-547. DOI: 10.1134/S0021894419030179      https://link.springer.com/epdf/10.1134/S0021894419030179?author_access_token=WMGSUtUb5sYAW7nWuVy-9UckSORA_DxfnEvY7GoQybYi0gm8aRE2NR8xY-yAZ2HYTLE6hYznMmnoHrbgsH3vKErKwdGsUmOx-eSqg28N-97UE8MRwtigMClDqsth9q0Wojf_qICHm09qadsOkV_KlA%3D%3D
  22. N.S. Selyutina, Yu.V. Petrov (2019) Fracture of saturated concrete and rocks under dynamic loading. Engineering Fracture Mechanics.  Vol. 225, 15 February 2020  DOI: https://doi.org/10.1016/j.engfracmech.2018.11.052       https://www.sciencedirect.com/science/article/pii/S0013794418306660
  23. N. Mikhailova, P.Y. Onawumi, G.Volkov, I. Smirnov, M. Broseghini, A. Roy, Yu. Petrov, V.V. Silberschmidt (2019) Ultrasonically assisted drilling in marble. Journal of Sound and Vibration. V.460. 2019,   114880  https://www.sciencedirect.com/science/article/pii/S0022460X19304420?via%3Dihub
  24. N.S. Selyutina, Yu.V. Petrov, V. Parameswaran, A.P. Sharma  (2019) The Strain-Rate Sensitivity of Irreversible Deformation of the Metallic Multilayer Composite GLARE. Doklady Physics. V64, Issue 8, 340–343  https://link.springer.com/article/10.1134%2FS1028335819080068
  25. D. Evstifeev, I. V. Smirnov, Yu. V. Petrov (2019) Effect of Ultrafine-Grained Structure of a Material on the Strength Characteristics of an Aluminum Alloy upon Impact Loads. Physics of the Solid State,  2019, Vol.61, Issue 6, pp 1062–1066      https://link.springer.com/article/10.1134%2FS1063783419060052
  26. D. Evstifeev, G. A. VolkovA. A. Chevrychkina, Yu. V. Petrov (2019) Strength Performance of 1230 Aluminum Alloy under Tension in the Quasi-Static and Dynamic Ranges of Loading Parameters. Technical Physics,  2019,  Vol. 64, Issue 5, pp 620–624   https://link.springer.com/article/10.1134%2FS1063784219050050
  27. S.A. Atroshenko, A.A. Chevrychkina, A.D. Evstifeev, G. A. Volkov (2019) Destruction of ABS Polymer in the Glass State under Dynamic Stressing. Physics of the Solid State, 2019, Vol. 61, No. 11, pp. 2075–2082    DOI: 10.1134/S1063783419110052  
  28. N. Gorbushin, Y. Petrov, Y.P. Zhao, Y. Zhang (2018) Threshold characteristics of short-pulsed loads combined with the ultra-sound field causing dynamic delamination of adhesive joints. Theoretical and Applied Mechanics Letters. 2018, 8(1) 28-31  https://doi.org/10.1016/j.taml.2017.11.002    
  29. M.V. Volkova, O.N. Granichin, G.A. Volkov, Yu.V. Petrov (2018) On the Possibility of Using the Method of Sign-Perturbed Sums for the Processing of Dynamic Test Data. Vestnik St. Petersburg University, Mathematics. 2018, 51(1)  23–30     https://link.springer.com/article/10.3103/S1063454118010132  
  30. N.S. Selyutina, Yu.V. Petrov (2018) Prediction of the Dynamic Yield Strength of Metals Using Two Structural–Temporal Parameters. Physics of the Solid State, 2018, 60(2), 244–249     https://link.springer.com/article/10.1134/S1063783418020221
  31. А. Evstifeev, N. Kazarinov, Y.Petrov, L. Witek, A. Bednarz (2018) Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept. Engineering Failure Analysis. 2018, 87, 15–21    https://www.sciencedirect.com/science/article/abs/pii/S1350630717306477   
  32. A.A. Chevrychkina, A.D. Evstifeev, G.A. Volkov (2018) Analysis of the Strength Characteristics of Acrylonitrile–Butadiene–Styrene Plastic under Dynamic Loading. TechnicalPhysics. 2018,  63(3381–384    https://link.springer.com/article/10.1134/S1063784218030064   
  33. Martemyanov A.N., Petrov Y.V. (2018) Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach. In: Karev V., Klimov D., Pokazeev K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham 233-248  https://link.springer.com/chapter/10.1007/978-3-319-77788-7_25    
  34. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, R.R. Valiev (2018) The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy. Journal of Materials Engineering and Performance, online from April 19, 2018     DOI: https://doi.org/10.1007/s11665-018-3332-8     https://link.springer.com/article/10.1007%2Fs11665-018-3332-8
  35. N.A. Gorbushin, N.O. Granichin, A.N. Logachev, Y.V. Petrov, G.A. Volkov (2018) Destruction of the adhesion zone by combined pulsed - vibrational impacts. Materials  Physics and Mechanics, 2018, 36(1) 114-120          DOI: 10.18720/MPM.3612018_12      http://www.ipme.ru/e-journals/MPM/no_13618/MPM136_12_gorbushin.pdf
  36. N.S. Selyutina, I.N. Borodin, Yu.V. Petrov (2018) Structural Time Peculiarities of Dynamic Deformation of Nanostructured and Nanoscaled Metals. Physics of the Solid State, 2018, 60(9)  1813–1820    DOI: 10.1134/S1063783418090275      http://link-springer-com-443.webvpn.jxutcm.edu.cn/article/10.1134/S1063783418090275
  37. V.I. Smirnov, Yu.V. Petrov (2018) Effect of pulse shape on spall strength. Journal of Applied Mechanics and Technical Physics, 2018, 59(2) 303–309   DOI: 10.1134/S002189441802013X     https://link.springer.com/article/10.1134/S002189441802013X
  38. Y.V. Petrov, V.V. Silberschmidt (2018) Dynamics and Thermodynamics of Fracture Mechanics. In: Altenbach H., Öchsner A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg    DOI: https://doi.org/10.1007/978-3-662-53605-6_241-1  https://link.springer.com/referenceworkentry/10.1007/978-3-662-53605-6_241-1
  39. N.V. Mikhailova, G.A. Volkov, Yu.V. Petrov, I.V. Smirnov, P. Onawumi, A. Roy, V. Silbershmidt (2018) Relations between parameters of fracture processes on different scale levels. Doklady Physics, 2018, 63(11)  459-461   DOI: 10.1134/S1028335818110095     https://link.springer.com/article/10.1134%2FS1028335818110095   
  40. N.S. Selyutina,  Yu.V. Petrov (2018) Fracture of saturated concrete and rocks under dynamic loading. Engineering Fracture Mechanics, 2018, in Press, accepted and available online     https://doi.org/10.1016/j.engfracmech.2018.11.052      
  41. S.A. Atroshenko, A.D. Evstifeev, Yu.V. Petrov (2018) Relation between structure of metallic materials and fracture properties under conditions of solid particle erosion. Procedia Structural Integrity, 13 (2018) 1359–1361  DOI: 10.1016/j.prostr.2018.12.284   https://www.sciencedirect.com/science/article/pii/S2452321618305225
  42. N.S. Selyutina, Yu.V. Petrov (2018) Temporal effects of dynamic yielding under high-rate loading. Procedia Structural Integrity, 13 (2018)  700–704   DOI: 10.1016/j.prostr.2018.12.116   https://www.sciencedirect.com/science/article/pii/S2452321618303512
  43. Y. Petrov, N. Kazarinov (2018) Structural-time nature of the dynamic instability of the fracture process. Procedia Structural Integrity, 13 (2018)  1620–1625 РНФ  ФЦП  DOI: 10.1016/j.prostr.2018.12.341   https://www.sciencedirect.com/science/article/pii/S2452321618305821
  44. N.S. Selyutina, Yu.V. Petrov (2018) Сomparative analysis of dynamic plasticity models. Rev. Adv. Mater. Sci.  57 (2018)  199-211      http://www.ipme.ru/e-journals/RAMS/no_25718/09_25718_selyutina.pdf
  45. A.D. Evstifeev, Yu.V. Petrov, N.A. Kazarinov, R.R. Valiev (2018) Strength of the Ti–6Al–4V Titanium Alloy under Conditions of Impact and Short Pulse Loading. Physics of the Solid State, 2018, 60(12) 2358–2362   DOI:  10.1134/S1063783418120120    https://link.springer.com/article/10.1134%2FS1063783418120120
  46. A.A. Chevrychkina, A.A. Gruzdkov, Yu.V. Petrov (2017) Application of nonlocal criteria for destruction in problems with a nonuniform stress field. Physics of the Solid State.  2017, 59( 8) P.1594-1599   https://link.springer.com/article/10.1134/S1063783417080042
  47. Y.V. Petrov, I.V. Smirnov, G.A. Volkov, A.K. Abramian, A.M. Bragov, S.N. Verichev (2017) Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. Journal of Rock Mechanics and Geotechnical Engineering.  2017,  9(1)  125-134     http://www.sciencedirect.com/science/article/pii/S1674775516302037
  48. Yu.V. Petrov, S.A. Atroshenko, N.A. Kazarinov, A.D. Evstifeev, V.Yu. Solov’ev  (2017) Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosionPhysics of the Solid State. 2017  59(4)   661-666     https://link.springer.com/article/10.1134/S1063783417040175
  49. Yu.V. Petrov, A.M. Bragov, N.A. Kazarinov, A.D. Evstifeev (2017) Experimental and Numerical Analysis of the High-Speed Deformation and Erosion Damage of the Titanium Alloy VT-6.  Physics of the Solid State. 2017, 59(1) 93-97    https://link.springer.com/article/10.1134/S1063783417010267
  50. N.S. Selyutina, Yu.V. Petrov (2017) Structural and temporal features of high-rate deformation of metals. Doklady Physics. 2017, 62(2) 102-105    https://link.springer.com/article/10.1134/S1028335817020136
  51. N.V. Mikhailova, G.A. Volkov, Yu.I. Meshcheryakov, Yu.V. Petrov, A.A. Utkin. (2017) Failure-Delay Effect in Destruction of Steel Samples under Spalling Conditions. Technical Physics. 2017, 62(4)  547-552    https://link.springer.com/article/10.1134/S106378421704017X
  52. A.D. Evstifeev, N.A. Kazarinov, Yu.V. Petrov, S.A. Atroshenko, R.R. Valiev. (2017 High-rate erosion of Ti-6Al-4V ultrafine-grained titanium alloy obtained via intensive plastic torsional deformation. Physics of the Solid State. 2017, 59(9), 1794-1797      https://link.springer.com/article/10.1134/S1063783417090086
  53. G.A. Volkov, Yu.V. Petrov, A.A. Utkin (2017) On some principal features of data processing of spall fracture tests. Physics of the Solid State. 2017, 59(2),  310-315    https://link.springer.com/article/10.1134/S1063783417020329
  54. A.Yu. Kuchmin, A.K. Abramyan, Yu.V. Petrov, I.V. Smirnov, A.M. Bragov (2017 Structural-time and pulse characteristics of dynamic fracture of some construction materials. Doklady Physics. 2017, 62(1) 27-29    https://link.springer.com/article/10.1134/S1028335817010049
  55. Yu.V. Petrov, N.S. Selyutina (2017) Prediction of the Effect of Plastic-Strain Stabilization under Cyclic Deformation Based on the Structural‒Temporal Approach. Doklady Physics. 2017, 62(10) 475–477    https://link.springer.com/article/10.1134/S1028335817100068
  56. Yu.V. Petrov, V.I. Smirnov (2017) Estimate of the Limit Displacement Wave Amplitude in the Dynamic Problem on an Out-of-Plane Crack. Mechanics of Solids. 2017,  52(4) 397–406    https://link.springer.com/article/10.3103/S0025654417040069
  57. Y.V. Petrov, A.A. Utkin (2017) Structural-temporal approach and geometry of the fracture zone in spalling. Procedia Structural Integrity, 2017, Vol.6, P.134–139    http://www.sciencedirect.com/science/article/pii/S2452321617303645
  58. Y.V. Petrov, N.S. Selyutina (2017) On the temporal peculiarities of stabilization effect under cyclic deformation for steel. Procedia Structural Integrity, 2017, Vol.6, P. 265–268  http://www.sciencedirect.com/science/article/pii/S2452321617303839
  59. S.A. Atroshenko, V.A. Morozov, D.A. Gribanov, A.A. Lukin, Yu.V. Petrov (2017) Metallic Ring Fracture Induced by Magnetic Pulse Loading of Short Duration. Procedia Structural Integrity, 2017, Vol.6, P. 906 – 911   http://www.sciencedirect.com/science/article/pii/S2211812814001485
  60. M.V. Volkova, O.N. Granichin, Y.V. Petrov, G.A. Volkov (2017) Dynamic Fracture Tests Data Analysis Based on the Randomized Approach. Adv Syst Sci Appl. 2017, 3, 34–41  http://ijassa.ipu.ru/ojs/ijassa/article/view/498
  61. Y. Petrov, I. Smirnov (2016) General effects of pulse electric breakdown of dielectric gaps and dynamic failure of continuous media. Procedia Structural Integrity, 2, 430–437, DOI: 10.1016/j.prostr.2016.06.056 (pdf)
  62. N. Selyutina, E.N. Borodin, Y. Petrov, A.E. Mayer (2016) The definition of characteristic times of plastic relaxation by dislocation slip and grain boundary sliding in copper and nickel. International Journal of Plasticity, 82, 97-111 DOI:http://dx.doi.org/10.1016/j.ijplas.2016.02.004 (pdf)
  63. N.A. Gorbushin, Yu.V. Petrov (2016) Effect of Combined High-Frequency and Pulse-Dynamic Impact on Adhesive-Joint Strength.Doklady Physics, 61(8), 384–388 DOI: 10.1134/S1028335816080036 (pdf)
  64. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, V.A. Lashkov, R.Z. Valiev, A.S. Bondarenko (2016) Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion of HighSpeed Erosion. Journal of Materials Engineering and Performance, 25, 3573–3579 DOI: 10.1007/s11665-016-2199-9 (pdf)
  65. E.N. Borodin, N.S. Selyutina, Yu.V. Petrov (2016) Determining Characteristic Plastic Relaxation Times Using Micro  and Nanocrystalline Nickel as an Example. Doklady Physics, 61(3), 143–146  DOI: 10.1134/S1028335816030095 (pdf)

  66. N.A. Kazarinov, A.D. Evstifeev, Yu.V. Petrov, V.A. Lashkov (2016) Dynamic Strength Properties of the Surface of an Ultra Fine Grained Aluminum Alloy under Conditions of High Speed Erosion. Doklady Physics, 61(5), 232–234  DOI: 10.1134/S1028335816050062 (pdf)
  67. Y. Petrov, N. Kazarinov, V. Bratov (2016) Dynamic crack propagation: quasistatic and impact loading. Procedia Structural Integrity, 2, 389–394, DOI: 10.1016/j.prostr.2016.06.050 (pdf)
  68. E.N. Borodin, N. Selyutina, Y. Petrov, A.E. Mayer (2016) Dependence of relaxation times on the material microstructure for different mechanisms of plasticity. Materials Physics and Mechanics, 26,  42-44 (pdf)
  69. Evstifeev, Y. Petrov, A. Bragov, A. Konstantinov (2016) The strength competition effect at different strain rates. Procedia Structural Integrity,  2, 446–451, DOI: 10.1016/j.prostr.2016.06.058 (pdf)
  70. I.V. Smirnov, Yu.V. Petrov, A.Yu. Konstatntinov, A.M. Bragov, and A.K. Lomunov (2016) Study of Deformation and Failure of Bitumens for Asphalt Mixtures under Dynamic Loads. Key Engineering Materials, 715, 43-47 DOI: 10.4028/www.scientific.net/KEM.715.43 (pdf)
  71. Yu.V. Petrov, E.N. Borodin. (2015) Relaxation Mechanism of Plastic Deformation and Its Justification Using the Example of the Sharp Yield Point Phenomenon in Whiskers. Physics of the Solid State,  57(2),  353–359   DOI: 10.1134/S1063783415020286  (pdf)
  72. Yu.V. Petrov, A.A. Utkin (2015) Time dependence of the spall strength under nanosecond loading.  Technical Physics, 60(8), 1162-1166     DOI: 10.1134/S1063784215080216 http://link.springer.com/article/10.1134/S1063784215080216
  73. VA Bratov, NA Kazarinov and YV Petrov (2015) Numerical implementation of the incubation time fracture criterion. JOP Conf Series653 (2015) 012049   DOI:10.1088/1742-6596/653/1/012049 (pdf)
  74. Yu.V. Petrov, V.A. Morozov, I.V. Smirnov, and A.A. Lukin (2015) Electrical Breakdown of a Dielectric on the Voltage Pulse Trailing Edge: Investigation in Terms of the Incubation Time Concept. Technical Physics, Vol. 60, No. 12, pp. 1733–1737     DOI: 10.1134/S1063784215120178   (pdf)  
  75. Y. Petrov, E. BorodinE. Cadoni and N. Selyutina (2015) Relaxation model for dynamic plastic deformation of materials.  EPJ Web of Conferences 94, 04039 (2015)    DOI: (pdf)
  76. NA Kazarinov, VA Bratov and YV Petrov (2015) Simulation of ceramics fracture due to high rate dynamic impact. JOP Conf Series653 (2015) 012050   DOI:10.1088/1742-6596/653/1/012050 (pdf)
  77. Y. Petrov and N. Selyutina (2015) Scale and size effects in dynamic fracture of concretes and rocks. EPJ Web of Conferences 94, 04005 (2015)    DOI: http://dx.doi.org/10.1051/epjconf/20159404005 (pdf)
  78. Y. Petrov, A. BragovA. Evstifeev and E. Cadoni (2015) Structural-temporal approach for dynamic strength characterization of gabbro-diabaseEPJ Web of Conferences 94, 01042 (2015)  DOI: http://dx.doi.org/10.1051/epjconf/20159401042 (pdf)
  79. A.M. Bragov, A.Y. Konstantinov, Y.V. Petrov, A.D. Evstifeev (2015) Structural-temporal approach for dynamic strength characterization of rock. Materials Physics and Mechanics 23, 61-65  (pdf)
  80. D. Peck, M. Wrobel, G. Mishuris, Yu. Petrov (2015) Threshold fracture energy in solid particle erosion: improved estimate for a rigid indenter impacting an elastic medium. Meccanica 50(12), 2995-3011  DOI 10.1007/s11012-015-0173-5 (pdf)
  81. G.A. Volkov, Yu.V. Petrov, A.A. Gruzdkov (2015) Acoustic Strength of Water and Effect of Ultrasound on the Liquid–Vapor Phase Diagram. Technical Physics,  60(5), 753–756    DOI: 10.1134/S1063784215050278  (pdf)
  82. G.A. Volkov, Y.V. Petrov, A.A. Gruzdkov (2015) Liquid–Vapor Phase Equilibrium Conditions in an Ultrasonic Field. Doklady Physics,  60(5), 229–231    DOI: 10.1134/S1028335815050122    (pdf)
  83. V. Bratov, Yu. Petrov, B. Semenov, I. Darienko (2015) Modeling the high-speed train induced dynamic response of railway embankment. Materials Physics and Mechanics, 22 (1)   (pdf) 
  84. S. Atroshenko, V. Morozov, D. Gribanov, A. Lukin and Y. Petrov (2015) Behavior of metals Induced by magnetic pulse loadingEPJ Web of Conferences 94, 02014 (2015)  DOI: http://dx.doi.org/10.1051/epjconf/20159402014